The Column-Row Factorization $A=C R$

 A new start for linear algebraGilbert Strang
MIT

Linear Algebra for Everyone (2020)

$$
A=\left[\begin{array}{lll}
\mathbf{1} & \mathbf{3} & \mathbf{5} \\
\mathbf{2} & \mathbf{3} & \mathbf{7} \\
\mathbf{1} & \mathbf{3} & \mathbf{5}
\end{array}\right] \quad \begin{aligned}
& m=3 \text { rows } \\
& n=3 \text { columns }
\end{aligned}
$$

Are the columns independent? Go left to right
Column 1 OK Column 2 OK Column 3?
Column $3=2($ Column 1$)+1($ column 2$) \quad$ Dependent
Column 3 is in the plane of Columns 1 and 2

Matrix $C=\left[\begin{array}{ll}1 & 3 \\ 2 & 3 \\ 1 & 3\end{array}\right]$ of independent columns in $A=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{3} & \mathbf{5} \\ \mathbf{2} & \mathbf{3} & \mathbf{7} \\ \mathbf{1} & \mathbf{3} & \mathbf{5}\end{array}\right]$
The matrix A has column rank $\boldsymbol{r}=\mathbf{2}$
The column space of A is a plane in \mathbf{R}^{3}
The column space contains all combinations of the columns
Column space of $A=$ Column space of $C(($ but $A \neq C))$

Express the steps by multiplications $A \boldsymbol{x}$ and $C R$

$A \boldsymbol{x}=$ matrix times vector $=$ combination of columns of \boldsymbol{A}
$\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 3 & 7 \\ 1 & 3 & 5\end{array}\right]\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]=2($ Column 1$)+1($ Column 2$)-1($ Column 3$)$

$$
=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad(\operatorname{dot} \text { products of } x \text { with rows of } A)
$$

$C R=$ Matrix times matrix $=C$ times each column of R
Use dot products (low level) or take combinations of the columns of C

$$
\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 3 & 7 \\
1 & 3 & 5
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 3 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \mathbf{2} \\
0 & 1 & \mathbf{1}
\end{array}\right] \quad \text { is } \boldsymbol{A}=\boldsymbol{C R}
$$

Check C times each column of R

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 3 \\
2 & 3 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 3 \\
2 & 3 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 3 \\
2 & 3 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\begin{array}{l}
2(\text { Column } 1)+(\text { Column } 2)=\left[\begin{array}{l}
5 \\
7 \\
5
\end{array}\right]
\end{array}+\begin{array}{l}
2 \boldsymbol{a}_{1}+\boldsymbol{a}_{2}=\boldsymbol{a}_{3}
\end{array}}
\end{gathered}
$$

How to find $C R$ for every A ? Elimination!
$\boldsymbol{A}=\boldsymbol{C} \boldsymbol{R}$ is $(m$ by $n)=(m$ by $r)(r$ by $n)$
$\boldsymbol{R}=\left[\begin{array}{ll}\boldsymbol{I} & \boldsymbol{F}\end{array}\right] \boldsymbol{P} \quad$ and $\quad \boldsymbol{A}=\boldsymbol{C R}=\left[\begin{array}{ll}\boldsymbol{C} & \boldsymbol{C F}\end{array}\right] \boldsymbol{P}$
In reality we compute R before $C!!$ The columns of I in R tell us the independent columns of A in C.

The permutation P puts those columns in the right places (if they are not the first r columns of A)
$\boldsymbol{R}=$ reduced row echelon form $\operatorname{rref}(A)$ (zero rows removed)

Here are the steps to establish $A=C R$
We know $E A=\boldsymbol{\operatorname { r r e f }}(A)$ and $A=E^{-1} \boldsymbol{\operatorname { r r e f }}(A): E$ is $m \times m$
Remove $m-r$ zero rows from $\operatorname{rref}(A)$ and $m-r$ columns from E^{-1}
This leaves $A=C\left[\begin{array}{ll}I & F\end{array}\right] P=C R \quad$ Dependent columns of A are $\boldsymbol{C F}$
C has r independent columns $\quad R$ has r independent rows
Rows of $A=C R$ are combinations of the rows of R
Row space of $A=$ Row space of R !
If A has 2 independent columns in C then \boldsymbol{A} has $\mathbf{2}$ independent rows in R

Column rank $=$ Row rank $=\boldsymbol{r}$ GREAT THEOREM
Look at $A=C R$ both ways: Combine columns of C Combine rows of R
$\boldsymbol{r}=1 \quad$ Rank one matrix $A=(1$ column $)(1$ row $)$
$\left[\begin{array}{llll}1 & 2 & 10 & 100 \\ 2 & 4 & 20 & 200 \\ 1 & 2 & 10 & 100\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{llll}1 & 2 & 10 & 100\end{array}\right]=C R$
If the column space is a line in 3 -dimensional space then the row space is a line in 4-dimensional space
A adds up (Column k of C) (Row k of R) $=$ New way to multiply $\boldsymbol{C R}$
Rank r matrix $=$ Sum of r matrices of rank 1

Geometry of A : Four Fundamental Subspaces

Column space $\mathbf{C}(A)=$ all combinations of columns $=$ all $\boldsymbol{A x}$
Row space $\mathbf{C}\left(A^{\mathrm{T}}\right)=$ all combinations of columns of $A^{\mathrm{T}}=$ all $A^{\mathrm{T}} \boldsymbol{y}$
Nullspace $\mathbf{N}(A)=$ all solutions \boldsymbol{x} to $A \boldsymbol{x}=\mathbf{0}$
Nullspace of $A^{\mathrm{T}} \quad \mathbf{N}\left(A^{\mathrm{T}}\right)=$ all solutions \boldsymbol{y} to $A^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$
Dimensions \boldsymbol{r} \boldsymbol{r}

$$
n-r \quad m-r
$$

Row space is orthogonal to nullspace!

$$
\left[\begin{array}{c}
\text { row } 1 \\
\cdots \\
\text { row } m
\end{array}\right][\boldsymbol{x}]=\left[\begin{array}{l}
\mathbf{0} \\
\cdot \\
\mathbf{0}
\end{array}\right]
$$

BIG PICTURE OF LINEAR ALGEBRA

Square invertible matrices $m=n=r$
Nullspaces $=$ zero vector only

Magic factorization $\quad A=C W^{-1} R_{*}$

$\boldsymbol{C}=r$ independent columns of $A \quad R_{*}=r$ independent rows of A $\boldsymbol{W}=r \times r$ matrix $=$ intersection of columns in \boldsymbol{C} and rows in \boldsymbol{R}_{*} The factorization is just block elimination on A. The block pivot is W.
$\boldsymbol{A}=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 3 & 7 \\ 1 & 3 & 5\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 2 & 3 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 2 & 3\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 3 & 7\end{array}\right]$
W is invertible and $\boldsymbol{W} \boldsymbol{R}=\boldsymbol{R}_{*}$ from r rows of $C R=A$

Randomized linear algebra
 Large matrices / thin samples
 $A \approx C W^{-1} R_{*}$
 "Skeleton factors"

References to $C U R_{*}^{3} \quad$ R. Penrose (1956) On best approximate solutions of linear matrix equations, Math. Proc. Cambridge Phil. Soc. 52 1719-.

Hamm and Huang (2020) Perspectives on CU R Decompositions arXiv 1907.12668 and ACHA 48

Goreinov, Tyrtyshnikov, and Zamarashkin (1997) Pseudoskeleton approximation LAA 261

Martinsson and Tropp (2020) Randomized numerical linear algebra: Foundations and Algorithms Acta Numerica and arXiv: 2002.01387

Randomized Numerical Linear Algebra $\boldsymbol{A} \approx \boldsymbol{C U R}$

Famous Factorizations of a Matrix

$$
\begin{aligned}
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}= & (\text { lower triangular } L)(\text { upper triangular } R) \\
\boldsymbol{A}= & \boldsymbol{Q R}=(\text { orthogonal columns in } Q)(\text { upper triangular } R) \\
\boldsymbol{S}= & \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{T}}=(\text { eigenvectors in } Q)(\text { eigenvalues in } \Lambda) \\
\boldsymbol{A}= & \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}=(\text { singular vectors in } U \text { and } V)(\text { singular values in } \Sigma) \\
A \boldsymbol{v}_{k}= & \left.\sigma_{k} \boldsymbol{u}_{k} \quad \text { (orthogonal vectors } \boldsymbol{v} \text { mapped to orthogonal vectors } \boldsymbol{u}\right) \\
& {\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
9
\end{array}\right] \quad\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-3 \\
1
\end{array}\right] }
\end{aligned}
$$

Full rank $\boldsymbol{r}=\boldsymbol{m}=\boldsymbol{n} \boldsymbol{r}=\boldsymbol{n}$ indep. columns $\boldsymbol{r}=\boldsymbol{m}$ indep. rows
$\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ is invertible $\quad \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$ is invertible

Solve $A \boldsymbol{x}=\boldsymbol{b}$
\boldsymbol{x} exact solution
$A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b}$
$A A^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{b} \rightarrow \overline{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{y}$
$\widehat{\boldsymbol{x}}$ least squares solution $\overline{\boldsymbol{x}}$ minimum norm solution
The minimum norm solution $\overline{\boldsymbol{x}}$ has no nullspace component / use the pseudoinverse $\overline{\boldsymbol{x}}=A^{+} \boldsymbol{b}$

Double Descent of Error

Deep learning has found that overfitting can help! A big question in the theory of neural networks using ReLU

Video Lectures ocw.mit.edu/courses/mathematics YouTube/mitocw Math 18.06 Linear Algebra (including 2020 Vision)
 Math 18.065 Deep Learning

Books

Introduction to Linear Algebra, (2016)
math.mit.edu/linearalgebra
Linear Algebra \& Learning from Data (2019) math.mit.edu/learningfromdata
Linear Algebra for Everyone (2020) math.mit.edu/everyone

