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A =




1 3 5

2 3 7

1 3 5


 m= 3 rows

n = 3 columns

Are the columns independent ? Go left to right

Column 1 OK Column 2 OK Column 3 ?

Column 3 = 2 (Column 1)+1 (column 2) Dependent

Column 3 is in the plane of Columns 1 and 2

a2



1
2
1






2
4
2


 = 2a1

a3 = 2a1 + a2
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Matrix C =




1 3
2 3
1 3


 of independent columns in A =




1 3 5

2 3 7

1 3 5




The matrix A has column rank r = 2

The column space of A is a plane in R3

The column space contains all combinations of the columns

Column space of A = Column space of C ((but A 6= C))
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Express the steps by multiplications Ax and CR

Ax = matrix times vector = combination of columns of A



1 3 5
2 3 7
1 3 5






2
1

−1


 = 2 (Column 1) + 1 (Column 2)− 1 (Column 3)

=




0
0
0


 (dot products of x with rows of A)

CR = Matrix times matrix = C times each column of R

Use dot products (low level) or take combinations of the columns of C
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


1 3 5
2 3 7
1 3 5


 =




1 3
2 3
1 3



[
1 0 2

0 1 1

]

is A = CR

Check C times each column of R



1 3
2 3
1 3



[
1
0

]

=




1
2
1







1 3
2 3
1 3



[
0
1

]

=




3
3
3







1 3
2 3
1 3



[
2
1

]

= 2 (Column 1) + (Column 2)

2a1 + a2 = a3

=




5
7
5




How to find CR for every A ? Elimination !
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A = CR is (m by n) = (m by r) (r by n)

R =
[
I F

]
P and A = CR =

[
C CF

]
P

In reality we compute R before C !! The columns of I in R tell us
the independent columns of A in C.

The permutation P puts those columns in the right places (if they are not
the first r columns of A)

R = reduced row echelon form rref(A) (zero rows removed)
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Here are the steps to establish A = CR

We know EA = rref(A) and A = E−1 rref(A) : E is m×m

Remove m− r zero rows from rref(A) and m− r columns from E−1

This leaves A=C
[
I F

]
P =CR Dependent columns of A are CF
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C has r independent columns R has r independent rows

Rows of A = CR are combinations of the rows of R

Row space of A = Row space of R !

If A has 2 independent columns in C then A has 2 independent rows
in R

Column rank = Row rank = r GREAT THEOREM

Look at A = CR both ways : Combine columns of C Combine rows of R

8



r = 1 Rank one matrix A = (1 column) (1 row)




1 2 10 100
2 4 20 200
1 2 10 100


 =




1
2
1



[
1 2 10 100

]

= CR

If the column space is a line in 3-dimensional space

then the row space is a line in 4-dimensional space

A adds up (Column k of C) (Row k of R) = New way to multiply CR

Rank r matrix = Sum of r matrices of rank 1
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Geometry of A : Four Fundamental Subspaces

Column space C(A) = all combinations of columns = all Ax

Row space C(AT) = all combinations of columns of AT = all ATy

Nullspace N(A) = all solutions x to Ax = 0

Nullspace of AT N(AT) = all solutions y to ATy = 0

Dimensions r r n − r m − r

Row space is orthogonal to nullspace !




row 1
· · ·

row m




 x


 =




0

·

0



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m rows and n columns r independent rows and columns

0

Row
space

Rn

Nullspace

of A Ax = 0

0

Nullspace

of AT

Rm

Column
space = all Axx b

Ax = b

BIG PICTURE OF LINEAR ALGEBRA

Square invertible matrices m = n = r

Nullspaces = zero vector only
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Magic factorization A = CW−1R∗

C = r independent columns of A R∗ = r independent rows of A

W = r × r matrix = intersection of columns in C and rows in R∗

The factorization is just block elimination on A. The block pivot is W .

A =




1 3 5
2 3 7
1 3 5


 =




1 3
2 3
1 3



[
1 3
2 3

]
−1 [

1 3 5
2 3 7

]

W is invertible and WR = R∗ from r rows of CR = A
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Randomized linear algebra A ≈ CW−1R∗

Large matrices / thin samples “Skeleton factors”

References to CUR3
∗

R. Penrose (1956) On best approximate solutions

of linear matrix equations, Math. Proc. Cambridge Phil. Soc. 52 1719-.

Hamm and Huang (2020) Perspectives on CUR Decompositions

arXiv 1907.12668 and ACHA 48

Goreinov, Tyrtyshnikov, and Zamarashkin (1997) Pseudoskeleton

approximation LAA 261

Martinsson and Tropp (2020) Randomized numerical linear algebra :

Foundations and Algorithms Acta Numerica and arXiv : 2002.01387

Randomized Numerical Linear Algebra A ≈ CUR

13



Famous Factorizations of a Matrix

A = LU = (lower triangular L) (upper triangular R)

A = QR = (orthogonal columns in Q) (upper triangular R)

S = QΛQT = (eigenvectors in Q) (eigenvalues in Λ)

A = UΣV T = (singular vectors in U and V ) (singular values in Σ)

Avk = σkuk (orthogonal vectors v mapped to orthogonal vectors u)

[
3 0
4 5

] [
1
1

]
=

[
3
9

] [
3 0
4 5

] [
−1
1

]
=

[
−3
1

]
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Full rank r = m = n r = n indep. columns r = m indep. rows

A is invertible ATA is invertible AAT is invertible

 A







A





 A




Solve Ax = b ATAx̂ = ATb AATy = b → x = ATy

x exact solution x̂ least squares solution x minimum norm solution

The minimum norm solution x has no nullspace component / use the
pseudoinverse x = A+b
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Double Descent of Error

n

m=n

m>n m<n

Deep learning has found that overfitting can help ! A big question in the
theory of neural networks using ReLU
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Video Lectures ocw.mit.edu/courses/mathematics YouTube/mitocw

Math 18.06 Linear Algebra (including 2020 Vision)

Math 18.065 Deep Learning

Books

Introduction to Linear Algebra, (2016) math.mit.edu/linearalgebra

Linear Algebra & Learning from Data (2019) math.mit.edu/learningfromdata

Linear Algebra for Everyone (2020) math.mit.edu/everyone
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